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Motivation atd aitm Step 2: Identify meaningful drought indicators Summary of results

In natural hazard analysis, damage functions relate hazard intensity to the negative effects of the hazard event, often Different drought indicators were evaluated: 1) Standardized Precipitation Index (SPI) of different timescales, 2) Standardized Pre- Evaluating drought indicators with text-based information on drought impacts or agricultural yield data has the po-
expressed as damage ratio or monetary loss. While damage functions for floods and seismic hazards have gained cipitation Evaporation Index (SPEI) of different timescales, and 3) streamflow percentiles. tential to identify drought indictors, which are meaningful for drought impact occurrence.

considerable attention, there is little knowledge on how drought intensity translates into ecological and socio-

economic impacts. Reasons for this are different types of drought (meteorological - agricultural - hydrological Example 1: US Neuse basin: correlation between impacts and SPI/SPE| The analysis shows that the indicator(s) most representative for drought impact occurrence are

- socioeconomic drought) and the complexity of drought propagation, leading to multifaceted impacts. a) sector or impact type specific (see example 1 step 2)

Additionally, drought impacts are often non-structural, hard to quantify or monetarize, data on impacts is =% i Effect of impact category b) region specific: different "best” indicators for the UK, Germany, and the US Neuse basin, and variability
sparse, and there is a vast range of drought indicators characterizing the hazard. Water supoly I Correlation between monthly time series within the UK and Germany (see examples 2 and 3 step 2 ).
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