

Historical tracking of nitrate in contrasting vineyards using water isotopes and nitrate depth profiles

Matthias Sprenger¹, Martin Erhardt², Monika Riedel², Markus Weiler¹

Introduction

Viticulture is seen as a relevant factor influencing high nitrate concentrations in the groundwater of SW Germany. Therefore, we address the following questions: Q1: Can we trace back the timing of nitrate mobilization using pore water

- stable isotope data?
- Q2: How do young vineyards and old vineyards differ with regard to the risk of nitrate leaching?
- Q3: Can a permanent green cover reduce the nitrate loads into the subsoil?
- Q4: Does soil tillage in winter increase the risk of nitrate leaching?

Study sites

Four sites in a catchment of an aquifer in SW-Germany Climate: temperate, average T = 10.5 °C, P = 722 mm/year Soils: silty Pararendzina on deep Pleistocene loess Young vineyards: installed May 2011 Old vineyards: installed in 1998

NewST: Young vineyard with soil tillage in interrows

NewGC: Young vineyard with green cover in interrows

OldGC: Old vineyard with green cover in interrows

OldST: Old vineyard with soil tillage in interrows

(1) Chair of Hydrology, Albert-Ludwigs-University of Freiburg, Germany (2) State Institute for Viticulture and Enology Freiburg, Germany matthias.sprenger@abdn.ac.uk

Methods

Sampling: Split sampling in Nov. 2013 in 5 cm intervals down to 380 cm soil depth; subsequent analysis for nitrate and water stable isotopes (Wassenaar et al., 2008).

Model: Hydrus-1D; water flow: Richards equation; $\delta^2 H = \frac{50}{2}$ transport: advection-dispersion equation; evapotranspiration: Hargreaves formula; root-water-uptake: Feddes model.

Parameterization: Objective function: Kling-Gupta-Efficiency of simulated and observed soil water δ^2 H concentration (Sprenger et al., 2015).

Water tracking: Tracing precipitation input through the soil profiles with site specific soil physical model.

Results: Observations

Nitrate depth profiles:

- Elevated nitrate concentration below young vineyards
- Reduced nitrate where green cover was seeded
- Higher nitrate concentrations where soil tillage was applied

Conclusion

- Water stable isotope depth profiles preserve information about percolation over the last years (Q1).
- Transient modeling allowed to consider time variance (Q1).
- Nitrate mobilization due to vineyard installations leads potentially to nitrate leaching (Q2).
- Green cover between grapevines are efficient to reduce the nitrate leaching (Q3).
- Elevated nitrate concentration in old vineyards can be attributed to soil tillage in winter (Q4).

Isotope depth profiles:

 Seasonal variation of the rainfall signal is preserved over the depth profiles Relative little variation among sites

winter 2011/2012 observed OldST observed Ol simulated OldST ---- simulated OldG kg NO₃⁻⁻ -N/ha 6 8 10 12 14 16 entrations related to installation Event water from 31.05.203 ration results Nitrate at NewST oncentration related to soil tillage on in May 0.015 kg NO3⁻⁻ -N/ha 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 kg NO_s - -N/ha Q.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Event water from 31.05.2 Event water from 30.12.20 Nitrate at OldGC Nitrate at OldST

Results: Simulations Isotope depth profiles: Peak depths are well met Partially offset Pedotransferfunction (PTF) fails Peaks do not simply reflect annual cycles due to a warm dry Water tracking related to nitrate concentrations:

	<u> </u>
NewST:	High nitrate conce
	the of vineyard
NewGC.	Unsatisfying calibr
OldST:	Elevated nitrate co
	in winter
OldGC:	Nitrate mobilizatio

References:

isotopes, HESS

Wassenaar et al., 2008, High Resolution Pore Water δ^2 H and δ^{18} O Measurements by H₂O (liquid) -H₂O (vapor) Equilibration Laser Spectroscop, Environ. Sci. Technol. Acknowledgements:

Fraction of event water [-]

Franziska Zieger, Begoña Lorente Sistiaga, Barbara Herbsritt, and Jutta Fröhlin for support in the field and lab. Förderverein Hydrologie at the Albert-Ludwigs-University of Freiburg e.V. and the Graduate School Environment, Society, and Climate Change for funding the conference attendance.

HYDR OGY

WEINBAUINST FREIBURG

Sprenger et al., 2015, Estimating flow and transport parameters in the unsaturated zone with pore water stable

Fraction of event water I-