Spatial impacts of urban structures on micrometeorological variables Merle Koelbing, Tobias Schuetz, Markus Weiler ## Introduction The heterogeneity of urban surfaces including buildings and vegetation causes high variability of micrometeorological variables on a small spatial scale. This makes it difficult to observe or even predict climate conditions, particularly evapotranspiration, with high resolution on the scale of entire cities. However, information on evapotranspiration on a microscale is essential, for example, for city planners to implement rain harvesting systems or mitigation strategies against heat. - A dataset is collected representing the spatial influence of urban structures on the microclimate. - The impact of several urban structures on the microclimate is quantified in relation to reference measurements. # Materials and Methods #### Observed variables: | Variable | | | |--|---|--------| | air temperature | Ta | [°C] | | relative humidtiy | rh | [%] | | infrared radiation temperature (90° FOV)*) | T _{ir,N,E,S,W,up,down} | [°C] | | shortwave radiation (180° FOV) | T _{ir,N,E,S,W,up,down} SW ⁱⁿ ; SW | [W/m²] | | wind speed** ⁾ | WS | [m/s] | | wind direction**) | wd | [°] | | *) at MLs only **) not shown in this study | | | ### Results ### Overview on measurement days | date | timespan | n _{rotations} | I _a mean
[°C] | rn mean
[%] | SW mean
[W/m²] | |-------------|----------|------------------------|-----------------------------|---------------------|-----------------------| | | | • | as | RT | | | 2015-11-26 | 12h -14h | 2 | 4.0 +/-0.20 | 94.4 +/-1.05 | 48.2 +/-39.59 | | 2015-12-11 | 10h -14h | 4 | 9.5 +/-0.30 | 56.9 +/-4.90 | 128.0 +/-43.00 | | 2016-01-15 | 10h -12h | 2 | 2.1 +/-0.12 | 70.5 +/-0.56 | 90.3 +/-33.30 | #### Evapotranspiration (ET): deducible measured ## Net Radiation (R_n): I ir,N,E,S,W Incoming longwave radiation $\frac{1}{2}$ LW $_{ML}^{in}$ -LW $_{RT}^{in}$ 0.2 Fish Eye Photos 90° [W/m²]: 300 $\Delta R_n = 19$ LW_{RT} LWⁱⁿ_{ML,N,E,S,W} # Conclusions and Outlook - The chosen method is a suitable approach to assess the spatial variability of micrometeorological variables in an urban surrounding. - Changes in microclimatic conditions are a function of space and time. The temporal variation can be eliminated by taking reference measurements into account. - We observed a distinct pattern for ΔR_n as a function of ML. - We will examine additional locations and cover seasonal effects as well. - spatial-temporal transfer specific functions surroundings and seasons will be derived. This allows a spatially differentiated parameterization of urban ET on a microscale throughout the year. LW_{RT} -LWⁱⁿN,E,S,W LW_{MI} Have a look at Freiburg, Germany, where future measurements will be performed! MASIG WASIG | Incoming longwave radiation (LW ⁱⁿ): | |--| | • RT: according to Baur & Philips (1934) | | using rh and Ta measurements | ML: derived from T_{ir,N,E,S,W,up,down} Fractions for sky and above ground objects are estimated by evaluating Fish Eye Photos.