Delayed observation of tree water uptake using in-situ measurements of stable water isotopes HYDR(

Stefan Seeger, Michael Rinderer, Barbara Herbstritt and Markus Weiler

EGU2018 Session HS10.5 - Stable isotopes to study water dynamics in the soil-plant-atmosphere continuum

Motivation

- Effort required to sample tree xylem water for stable water isotope analysis previously reduced feasible sampling frequencies
- Development of in-situ vapour sampling probes (Volkmann et al. 2016) promises new possibilities for long term and high frequency monitoring of stable water isotopes in the tree xylem
- Apart from proof of concept study over 12 days and close to the lab, applications of the new method are missing

Objectives

- First extended field application of the xylem water isotope sampling probe
- Monitoring tree water uptake during a sprinkling experiment using deuterium enriched water as an artificial tracer

Study site

- Old growth beech forest in the Black Forest, Southwest Germany
- 12 h irrigation of 200 m² area with 60 m³ of isotopically labeled water (Deuteriumexcess of 110 %)

Irrigation setup

Field laboratory

Measurements

- Xylem water isotope probes (XWIPs) installed in two trees on the irrigation plot and two trees on the reference area
- Sap flow sensors (East 30 Sensors) installed close to each isotope probe
- Drilled soil cores analyzed for stable water isotopes with vapor equilibration

XWIP: Xylem water isotope probe

Thoughts on tree fine root distributions

 Root densities declining with depth & horizontal

> Area within a certain perimeter grows with the square of the distance

distance to the stem

 Up to a certain horizontal distance from the stem, the increase of covered area outweighs the decrease of relative root density

→ In total, the most fine roots are found at a bigger distance from the stem

Conceptual tree root water transport model

Horizontal distance from stem [m]

Effective root distribution.

- Explicit simulation of multiple "root pipes" (all combinations of depth and distance), represented as FIFO (first in first out) buffers, whose lengths are determined by depths and distances
- Number of input & output elements per time step determined by current sap-flow velocity
- Outputs of all "root pipes" weighted according to the effective root distribution

Results

Soil profiles before and after the irrigation

- Increased D-Excess of labeling water found in the soil depth profiles
- Strong soil heterogeneity leading to contrasting soil profiles within irrigated area → Is there a representative soil profile and how do we obtain it?

Probe temperature-humidity relation

- Standard measurements most consistent
- All tree probes occasionally deviate from linear relationship → Are temperatures of nearby sap flow sensors representative enough?
- "Plot2" and "Ref2" indicate malfunction of the intended dilution process

Calibration

- Different calibration approaches yield different isotope values, but overall patterns persist
- Drift of light standard, while heavy standard's raw values remained more stable → How do we ensure stability of standards?

Xylem water isotope time series

- 10 to 19 days pass until the maximum D-Excess is reached on the irrigated area
- Values on reference area always close to the natural D-Excess values measured in the precipitation bulk samples
- Calibration artifacts cause improbable short term signal variability

Conclusions

- XWIP probes allow for near real time (values available within minutes), high frequency (one value each 10 minutes) monitoring of xylem water isotopes
- Tree root distributions smooth isotopic signals
- XWIPs have proven to be applicable for monitoring tree xylem water isotopes for at least 50 days

Outlook

- Further applications: more regular measurements & longer periods
- Improvement of calibration procedure to reach accuracies required for monitoring of less pronounced natural isotopic signals
- Development of probes with integrated temperature measurement
- Replacement of on-site sample analysis by controlled sampling into gas tight bags